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SUMMARY

This report describes a theoretical investigation of three-dimensional
relativistic klystron interaction. The relativistic axisymmetric equations
of motion are derived from the time-dependent Lagrangian function for a
charged particle in an electromagnetic field. An analytical expression of
the fringing RF electric and magnetic fields within and in the vicinity of
the interaction gap and the space-charge forces between axially and radially
elastic deformable rings of charges are both included in the formulation.
This makes an accurate computation of electron motion through the tunnel of
the cavities and the drift tube spaces possible. The method of analysis is
based on a Lagrangian formulation. Bunching is computed by using a disk
model of an electron stream in which the electron stream is divided into
axisymmetric disks of equal charge and each disk is assumed to consist of a
number of concentric rings of equal charges. The individual representative
groups of electrons are followed through the interaction gaps and drift tube
spaces.

INTRODUCTION

The klystron is one of the most versatile electron devices used for
amplification and generation of energy at microwave frequencies at high
power levels. It has found many applications in communications, radar, mi-
crowave energy sources for particle accelerations, microwave heating, and
industrial processing. A recent advance in the depressed collector design
(ref. 1) has made the high-power klystron a feasible high-efficiency micro-
wave power source which is specially suited for transmission of large micro-
wave power from space.

Efforts to compute rigorously relativistic three-dimensional axisymme-
tric electron motion in the klystron have been pursued at the Lewis Reseach
Center. The present investigation serves as a continuation of such efforts
with the objective of establishing a complete theory of relativistic kiy-
stron interaction.

In this study, the Lagrangian formulation of a hydrodynamic beam model
is used. The electron stream entering the interaction gap is subdivided
into representative charge groups. The individual charge groups are fol-
lowed through each interaction gap and drift tube space until the output
interaction gap is reached. Thus electron overtaking and crossover are ap-
propriately dealt with. The electron stream is divided into N axisymme-
tric disks of equal charge per rf period, and each disk is assumed to con-
sist of R concentric rings of equal charge. The rings are elastic and de-
formable in the axial and radial directions, and the disks are assumed to be
thin and the rings narrow. The velocity of each ring, its phase with re-
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spect to the cavity gap voltage, and its radius at a specified position in
various interaction gaps and in various drift tube spaces are computed from
three-dimensional large signal programs.

With the space-charge effects on the bunching process included, the
debunching effects of the space-charge forces are appropriately dealt with;
furthermore, with the radial motion considered, radial beam loading and the
effects of a multidimensional charge motion on the field-electron interac-
tion process are accurately formulated.

This investigation separates conveniently into three parts:

(1) Formulation of relativistic equations of motion in an electromag-

netic field

(2) A study of field-electron interaction in the first and second cav-

ity gaps

(3) A study of the large signal energy exchange process in the third

and succeeding cavities up to and including the output cavity

FORMULATION OF RELATIVISTIC EQUATIONS OF MOTION

The relativistic equations of motion of a charged particle in a curvi-
linear coordinate system, such as the circular cylindrical system, can be
safely derived from an invariant formulation of particle dynamics, such as
the Hamiltonian or the Lagrangian. Mathematically these functions are
equivalent, but the Lagrangian method is somewhat more direct. In what fol-
lows, the Lagrangian formulation is used.

The Lagrangian of a particle of rest mass mg and charge e in an
electromagnetic field determined by the potentials ¢ and A s

L(t) = -m0c2 ‘/1 8 —eo+e(u- A) (1)

where 8 = u/c, as usual in relativistic formulas. If gqj, i =1,2,3, are
the three coordinates of any generalized coordinate system, which define the
position of the charged particle, then the Lagrangian dynamic equations of

motion are

d__AL__?_L__=o i=1,2,3 (2)

where a(_/aq1 = pj are the canon1ca1 momentum components, which together
form the total momentum vector P of the particle. In circular cylindrical

coordinates,

A A A
— *— °e— *—
= + +
u rar rq>a“o za2
and
[ ) [ ) -2
u2 _ r2 + r2¢2 + 7

The field vectors in free space or in vacuum are given by the following re-
lations:
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By performing the indicated differentiations, we obtain

aL y

p. =—=mr + eA (33)
roon r

p, = mz + eA, (3b)

p = mrz; + erA (3c¢)
? @

0f these equations, the first two, (3a) and (3b), are linear momenta, and
the third, (3c), is an angular momentum. They are the sums of the relati-
vistic mechanical momenta, differing from the ordinary (nonrelativistic)
momenta only by the Fitzgerald factor which appears implicitly in the rela-
tivistic mass m, and of a momentum of electromagnetic origin. It is as-
sumed that the acceleration momentum is not important in the formulation.
The relativistic mass m of the particle at velocity u is given by

m

(see appendix A). Next, the derivatives 3aL/agj are given by

. . 9A . . dA

aL _ 2 3¢ r 8 z

3= Mre” - e 3?'+ e[} 3;—-+ ? 37 (rA¢) + z 3;—] (4a)
. 3A . 3A . 8A

aL _ _o 3¢ _r _® _2

z- €377 eQ‘az tregz 2 az) (4b)
. 3A . 3A . 3A

AL _ o 32, -2+ 2+ 2T

o= ~© 3o e(ra(p rb T 2 59 (4c)

In the case of axisymmetric field, the field is rotationally symmetrical, L
is independent of the azimuthal angle ¢, and we obtain from equation (4c)

L (4d)

The relativistic dynamic equation of motion of the charged particle can
now be obtained by substituting equations (3) and (4) into equation (2) with
the help of the following relations:



E=-v& — 3T
?:Vx?
d - 3
=Y VR
When the result is regrouped,
d_ m; - mr.2 =elE + r.B - ;B (5a)
at )= \r 2 o a
9 mz-elE.+ B - red 5b
dat - Z 9 tpr ()
d 20+ =
Hf‘(mr @ erA%) =0 (5¢)

We notice that expansion of the left side of both eaquations (5a) and (5b)
will contain a term dm/dt; thus, when the energy conservation relation (eq.
(B-4c) of appendix B) is used, equations (5a) and (5b) become (ng = e/my)

.2 e . .
r rz
1 -~ —2-> - ;’é‘ EZ + (r(PBZ - ZB(P> (66)

r_ e =‘|"0|E<
Vi -2 VYi.§ AN

e .2 LI ] . R
o ng [E,11 - 5 ) - FE, ¢ (rB - r<pBr> (6b)
1-8 ¢ ¢ !

Consider first the azimuthal equation of motion, equation (5c); the
momentum integral yields

PqJ = constant

or
rz. +er,A, =m rz. + er,A (7)
MyTo ¥ 2Re2 =M% 171

If electrons have started from the cathode, where r = r, R,
and ¢ = ¢ = 0, the total amount of magnet1c flux passing tﬁrou a
circle of rad1us r{ inplane 1 (fig. 1) is found by 1ntegrat1ng the
product of the axial magnetic field B, and the differential ring-shaped

area 2wr dr from zero to rj as follows:



‘l’l = ZHY‘BZ G.
0
=211/ Y‘(VXA)Z dr
0

—

where B, = (v x A), and in cylindrical coordinates is given by

153
BZ =-F 3—1: (Y‘Acp)

for 3/3¢ = 0. We can now interpret the term rjA g as the magnetic flux
enclosed within the radius rp. Similarly the term rsA is to be inter-
preted as 1/2= times the magnetic flux passing through plane 2 enclosed
within a radius ry. Thus equation (7) can be rearranged to yield Busch's
theorem

or

v = - I"02I Vi-6 (4,- v (8)

2nr

where ¥ = ¥y is the cathode flux and equation (8) is now referred to any
plane perpendicular to the axial direction.

B

r1-- 'ELECTRON PATH
- z

PLANE 2

Figure 1. - Formulation of Busch's theorem,



Equations (6a), (6b), and (8) form a system of three-dimensional rela-
tivistic equations of motion of an electron in an electromagnetic field, and
they are rewritten as follows:

.. . A ° . .
2 Z r r
r=re¢ - |n0| ¥V1i-8 Er(l —C——2> -?Ez+rq>82— zB(p (9a)

- ;2 rz * *
z=-|n0| V1—52E2<1—?- -—?-Er+r8¢—rrpBr (9b)

C

. ¥y o~ ¥ '
R s
i

where the E's and B's are the electric and magnetic field components
which may exist in both the interaction gaps and the drift spaces in a mul-
ticavity klystron. In an accurate treatment of klystron analysis, both the
cavity circuit fields and the space-charge fields must be included in using
equations (9). Thus

Er = Er—cct * Er—sc (10a)

E, = Ez-cct T By sc (10b)

where Ep_cct and Ez_cct are the RF cavity gap fields at the beam position
in the radial and axial directions, respectively, and Ep_gc and E,_g. are
the radial and axial space-charge fields, respectively.

Analytical expressions of the fringing RF electric and magnetic fields
within and in the vicinity of the interaction gap obtained from a previous
investigation (refs. 2 and 3) result in the following:

Er(r,z,t) = EOFr exp(Jjut) ; (11a)
for -2< z< 2
Ez(r,z,t) = EOFZ exp(Jjot) (11b)
and
Er(r,z,t) = EOGr exp(Jjuwt) (12a)
for |z| > 2
Ez(r,z,t) = EOGZ exp(Jjut) (12b)
where



J,(pr,) me -me p.zZ\ ~p.2a/a
Fr = Jl € n) € ma + e+ - sinh{2-]e "
1Y/ \Pp - Pp ™ Maj a

n=1
J1<r k2 + m2)
- m sinh(mz) -
( k2 + m2>J0<é k2 + mz)
: ' Jo(r sz + m2)
;= cosh(mz)
Jo(a sz + mz)
_ anO(pxn) oM . oMe e—pnz/a cosh Eﬂf
pn‘]l():;7 Pp = M2 p, * ma a
n=1
- Jdi(pr ) |sinh(p,. + ma)ﬁ- sinh(p_ - may& —(pnz)/a
6 - 1\P*n pf a, Pn a ze
r Jl(xn) L p, T ma p, ~ Mma |Z]
n=1
6 - Ando(pxn) I—sinh(pn + ma)ai+ sinh(pn - ma)aie—(pnz)/a
z ani(xn) I_ P + ma P, - ma
n=1

in which Eg 1is the electric field amplitude specified at the midplane of
the cavity gap (z = 0 and r = a) and is related to the gap voltage by the
following relations:

2% EO
Y =,J/ﬂ Eo cosh m(z - &)dz = 2 = | sinh(mg)

0

mVn

E0 = 2 sinh(mg) (13)



where V, 1is the gap voltage of the nth  cavity and m 1is the field-shape
parameter. For a uniform field, m = 0.

The three-dimensional nonrelativistic space-charge fields have been de-
rived (ref. 3) in terms of two static Green space-charge potentials ¥, and
% .. The three-dimensional relativistic space-charge fields may be reaéi]y
obtained by relating these Green function potentials as static potentials in a
moving coordinate system and by applying a proper Lorentz transformation.
Furthermore, since_jn the moving frame of reference the vector potential
function A' or B' = 0, the fields in the laboratory frame can be found as

follows:

0
E (ryz,t3r',2') = - —— @ (l4a)
r-sc NRweOEl2 e
Ig
E (ryz,tsr',2') = - g ! (14b)
Eq)_sc(rsz,t;rlszl) =0 (14C)
Br_sc(r,z,t;r',z') =0 (15a)
BZ_SC(r,z,t;r',z') =0 (15b)
Uz
B(p_sc(razat;r »Z ) = ;_ EY‘—SC (15C)
where
A
_ n
e AN N2
I
Ja(x 0)da(2 0n) “\¢ E- &
gg( E,0) = - 0 n0 . sign ——1 Ql_———
—d d Ji(x,) 2
_ Uz
n=1 all €920 1 - <E_>



are the two modified Green function potentials. In these potential expres-
sions, £ and p are the two normalized coordinates at the field point, and

and pg are the two normalized coordinates of the source points.
The other symbols are defined as follows:

Ig(rAn)s I1(xy) modified Bessel functions of zero and first order, respec-
tively

Jg(rp)s J1(xp)  Bessel functions of zero and first order, respectively

An nth root of Bessel function Jg(rp) = O
k free space wave number, w/C

’ R

a tunnel radius

When the expressions for the cavity gap fields and the relativistic
space-charge fields (eqs. (10) to (15)) are substituted into equations (9a)
and (9b) and the resultant equations are normalized with respect to the
tunnel radius a, we obtain the relativistic three-dimensional equations of
motion in dimensionless form as follows:

Normalized axial equation of motion:

me

.. aP .o [G . G

£ = 0251nhim§$ cos 6 (ka)2£u Fp + Bka)ZEZ _ {] FE
43 (ee2) e -

-

T fpgz Po 2: 20 mcO2 B ¥- %
+NR- m) B_e—a'[l‘(ka) Ez]glg"'z—p' o -B-E) m (16)



Normalized radial equation of motion:

aPﬂ c1nh?m * r

= _ 43( I ~/ cos 61[_1‘(ka)L°LJ\p} (ke pi\s)j

10

2 2 2
+}19._ UL_Q Yok _292 BZW_\PC (17)
4p w ‘ya Ea wa

V1 - (u/c)? = 1- (ka)z(;ﬁz+ &)

2
1+ -}I-(ka)2 “c0 Y- ¥
w Ya

1 Yo o\
relativistic velocity reduction factor, |[1 + 5V 1+ v

radius of cathode

relativistic dc beam velocity, uggRy

nonrelativistic dc beam velocity, '/Zie/moi 0= 5.93x105 0° m/ sec

equivalent beam voltage, m0c2/e = 5.11x105 volts

w/UOO
wt

normalized axial coordinate, z/a
deg/de
normalized radial coordinate, o

do/de



P
¥(p,E) 217[ B, (0,8)0 do
0

¥3 na280
¥e cathode flux, nazBC
wcO nonrelativistic cyclotron angular frequency, (e/mg)Bg

e/m0 IO
®0 nonrelativistic plasma angular frequency, _—
P r-:o'rru00

We note that equations (16) and (17) are highly nonlinear, cannot be solved
analytically, and must, therefore, be solved on a high-speed digital compu-
ter. Furthermore the moduiation index a should be specified before equa-
tions (16) and (17) can be used.

For the input cavity gap (the first) and the second cavity gap « s,
by definition, small (e.g., <0.02 and <0.07, respectively). In particular,
for the first cavity, aJ can be related to the power input to the cavity
Piy and to the total s%unt resistance of the cavity Rgy by the
relation

Xl Rsh in
v

a =
1 0

where Rgph = Rcav + Rp * Rexs Rcay 1S the shunt resistance component due to
cavity losses; Ry is the component from the beam loading, which may be
negative but is ordinarily positive and often the dominant component of the
total shunt resistance; and Rgy 1is the reflex load resistance due to
external losses (load) coupled to the cavity (zero in the case of the input
cavity). Generally Rgp is related to the unloaded Q, ana the R/Q
value of the cavity by the relation

Rsh
Q= w7

Hence the value of Rgp can be obtained by values of Qy and R/Q
which are usually the design parameters for a given cavity.

CALCULATION OF BUNCHING CURRENT AND VELOCITY MODULATION IN SECOND CAVITY

Interaction of an unmodulated electron stream with the input cavity
(first cavity) gap fields gives rise to the velocity modulation of the
stream. As the beam moves along the first drift tube, the velocity varia-
tion of the stream is converted into density modulation, and the electron
current at any point in the drift tube space can be computed from the kine-
matic of the electrons.
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+dz
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Figure 2, - Disk-ring model for computing induced current.

If we divide the beam into a number N of disks of electrons and we
divide each disk further into R elementary charge rings (fig. 2), an
e1ementary charge ring 2wrg drg dzg containing a charge density
oo{zg.1 at time 'ty at a later time t becomes o(z,r,t) _
in an eqement of charge ring 2rr dr dz. From the charge conservat1on
principle, we relate these charges by the following equation:

p(2,r,1)2nr dr dz = oy(2y,7st,) :E:,Zwro drg dz|
NR

The modulus is taken, since the sign of the charge is unchanged even if the
electrons overtake one another. The summation over (2wrg drg dzg) implies
that all elements of the charge ring which entered the first cavity gap ap-
pear within the charge ring 2ar dr dz at the later time t as a result of
overtaking and trajectory crossing. Thus

D(Zsr,t) = pO(ZO’rO’tO) E

NR

0 dro dzO

r dr dz

,
(18)

where the charge density o (zo,ro,to) is assumed constant over the beam
cross section at the 1n3ect1on plane z = zg, and, in terms of the beam cur-

rent Ig,

t

- 00(20sTgs ) = 2

We note that rg is the mean radius of the charge ring at zg. The linear
charge density in any annular ring and at any given displacement plane
transverse to the direction of the beam is written as

12



do(z,r,t) = -2wp(z,r,t)r dr

dz

= -2moy(2g:Tgs o) E ro dro-dz—o (19)
NR
by equation (18).
dz
Furthermore, by expressing il as
dz0 uz(zo,ro,ro) dt0
dz uz(z,r,t) dt
. uz(zo,ro,to) de0
= Ut |98
we can write equation (19) as
U_(2Zns"nstn) de
do(z,r,t) = —ano(zo,ro,to) Zu ?z ? t? E 839 o dro (20)
Z L] 9

NR

In the computation of bunching current in the second cavity, it is assumed
that there is no net current in the radial direction (i.e., small signal
theory is assumed); then the incremental current through the annular ring
can be written as

b
1(z,t,§) = -2np(zo,ro,to)uz(zo,ro,to) J/. o dro E
0 NR

b
EY>
b
O W

In terms of the normalized parameters & and p, equation (21) can be

written as
2 b/a
i(E,0,0) = 210(%) / E

0 NR

de0
de

(21)

ds,
e |0 %o

deo
de

Py 9o (22)
13



It is to be noted here that pg = rg/a 1is not the dc beam charge density
used prior to equation (22). _

The total electron convection current may be conveniently expressed in
terms of a Fourier series written in the variables o as

L]

i(&0,8) = Ag * :E: (A, cos ne+ B sin ne) (23)
n=1
where
1 21T .
A0=ﬂf 1n(§,p,e)de
0
2n b/a
21 2
_ 70 fa pn Go~ d6. = I (24)
2@ LS o
1 o
A, = ;/ 1n(£,o,e)cos nede
0
27 b/a
_ 210 a 2 pn COS no dp, db
-~ (5) 0 0"
0 0
IO 27
=T/ cos ne deo (25)
0
and
1 2w ) ‘
Bn =;f 1n(£,p,e)s1n ne de
0
I

o

I
|

2w
/ sin ne de, (26)
0

in which e is the phase of the electron at any point along the stream.
This is to be related to the injection phase of the electron ¢ at the
time of entering into the interaction gap space of the first cavity. The
interaction gap space is defined (fig. 3) as extending from z = —(% + 2a)
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to z = +(&+ 2a), where 2a 1is the tunnel diameter and 231 is the
cavity physical gap length. Thus

+2(9,+2a) +L1' (2+ 2a)

=t
0 u0 uZl

or

wly - (&+ 2a)

o

2=60+6+

(27a)
Uz1

In terms of the normalized parameter &, this can be written as
L2 *-1
o=+ o t(5-2-2)7 (27b)

where uz1 1is the electron velocity at the plane of exit of the first
cavity gap to be either computed or substituted from small signal theory.

The bunching current at the midplane of the second cavity gap (z = zp)
can now be obtained by, first, letting 6 = e and, second, substitut-
ing equation (27b) for 6 in equations (24) and (25). The result is

an

. Io 2m L s -
1n(£,o,6)=10+ rcosne/ cosn|:eo+ eg+ 3-5--2)&;1 deo

n=1 0
1 2w .
§ 0 . . L 2 -1
+ ﬂ——sm ne/ s1nn[eo+ eg+(-é--a-2) ;l]deo
n=1 0
(28)
CAVITY GAP1 CAVITY GAP2 CAVITY GAP n
lvl | | | Vn |
—1 |1 N ISR N ) S
FLTIC I S T G 1520 I
-~ 2a % 2afe— ——Zal-—zlc—-|2al'— ‘-l;“——jl—'hal‘-
(0 } L e Ln_l
% Zo'o t2 tn
o ®n

Figure 3. - Geometrical parameters of muiticavity kiystron.
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The ratio of harmonic current amplitudes to direct current is given by

: 2
i (&,0,0,) 2w .
LU 2 1 L [ -1
0
2 1/2
271' . I_ % -_1
+ jf sn1nP0+ %4-(3-;-2)ﬁ]d% (29)

0

for n=1,2,3, ... . The phase angles of the nth harmonic with
reference to a pure cosine or pure sine wave of the same frequency are given

by
B
-1{"n
A, = tan <ﬁf> (30)

n

Once the electron convection current is obtained, the induced current,
and hence the induced voltage, can be computed. Since ap 1is small in the
second cavity, the current induced there as a consequence of the bunched
electron beam traversing the cavity gap can be computed by the following re-
lation:

Iiind)2 = MMyip( 80, 8)) (31)

where i2(&,0,62) is the electron convection current passing through the
midplane of the second cavity, and M, and M, are radial and axial

beam coupiing coefficients, respectively, given by the following relations
(ref. 4):

Viglred) - 15(xeb)
M - 0''e 1'\Te (31a)
r IO(Yea)
and
sin BeZZ
where Yo = ai - kg is the radial propagation constant, kO = w/C,



Be = w/ug, and Ig and I; are the modified Bessel functions of the zero
and first order, respectively. We note that the axial beam coupling coeffi-
cient is to be evaluated at the edge of the cavity gap. The voltage across
the second cavity gap (i.e., across the capacitor of the equivalent shunt
circuit, fig. 4) is given by

VgZ - z21(1'nd)2

where Zp 1is the dynamic shunt impedance of the cavity given by

R
sh
Z(w) = T 75

in which Rgp 1is the shunt resistance at resonance, and & 1is the frac-
tional deviation from resonance and is defined by

w - w
S = 0
w
Thus
v
9 = V‘gﬁ
0
MMy ia (80 8 Repp (32)
= v, I 278,

where the subscripts 2 imply that these quantities are to be evaluated in
cavity gap 2.

CAVITY GAP 1 2 3 n (OUTPUT)

— Va1 <—Vgn:‘
—annr——
Kel ﬂ‘gn
M e
RAIE INP _POWER — - Rl.:—
WA— uT W
—— — SOURCE EXTERNAL LOAD

Figure 4. - Schematic of multicavity klystron.
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LARGE SIGNAL ENERGY EXCHANGE AND CALCULATION OF INDUCED CURRENT

In a multicavity high-power klystron, interaction between the bunched
electron stream and the cavity gap fields in the third and succeeding cavi-
ties up to the output cavity becomes complicated. The simpler method of
computing the induced current used in the section CALCULATION OF BUNCHING
CURRENT AND VELOCITY MODULATION IN SECOND CAVITY is no longer valid. In
this section, a general method of approach is used. This method is based on
Shockley (ref. 5) and Ramo (ref. 6) theory.

Consider an electron of charge -e that travels a distance dl  inside
the cavity interaction gap space (fig. 3). The gain or loss of its kinetic
energy is given by _

— -

dW = -e ECct - dl (33)

By the theory of Shockiey and Ramo, the exchange of energy is related to the
induced current that flows in the external circuit (i.e., the cavity) and
the induced voltage that appears across the cavity gap by the following re-
lation:

Setting equation (33) equal to (34) yields
E - E
cct dl cct -
1. e g— +« 7 =€ - u (35)
ind =" Vg @ Vind

where Eect 15 the cavity gap field (the circuit field) and U = d1/dt is
the electron velocity.

Since many electrons are present inside the cavity interaction gap
space at any instant of time and the electron transit time within the inter-
action gap space is finite, each elementary current carried at a given mom-
ent of time by each elementary charge within the interaction gap space will
contribute to the total induced current. These elementary currents in the
plane over which the beam enters the interaction gap space, and in the plane
located some distance away in the direction in which the beam is traveling,
differ not only in velocity but also in phase. By summing up the elementary
current or charge within the interaction gap space, we obtain the total in-

duced current
. E
Ling(t) =/ ou -« St de
ind

T

<l

where o(r,z,6,t) is the charge density inside the interaction gap space.
Alternatively, in terms of convection current density J¢ (= dﬁg, equa-
tion (37) can be written as

18



E
- cct .
Linglt) = / T - e 36)

T

where dt = r dr de dz is the volume element. The integration is taken
over the whole volume of space of the interaction gap space occupied by the
bunched electrons at the time t. We note that, since the cavity gap field
Ecet 1s proportional to the induced voltage Vipg, for a given electron
ve?ocity u, the induced current is independent o? the voltage across the
cavity gap.

Using the first expression, equation (36), we find

—

+2 b! E
Iind(t) = 2"/(2 a)/ ) p(r,Z,t)U- \TC—C'% r dr dz (37)
-( 0

Lt2a) !

where b'(z) is the edge of the beam as a function of z and is definea by

t .
b'(z) = g +-/0‘ r dt (38)

in which vrg 1is the radial position of the electron at the entrance to the
interaction gap space, here to be referred to as the entrance plane of the
first cavity gap space.

The integral of equation (37) can be evaluated by applying the charge
conservation principle (see fig. 2) to write the charge density o(r,z,t) as
function of the phase of the injected electrons at the entrance to the in-
teraction gap space of the first cavity as follows:

p(r,Z,t) = DO(FO’ZO’tO) E

fb
r. dr
0 0
pr(ra,zats) Y0 E
0 07070 b7(2)
~/r r dr

2
b U_(rasznstn)
eq 2zt 0°°0°70
po(rgs2gstg) [E"(’z‘y] TH G E

where beg 1is the equilibrium, or the average, radius of the outer charge
ring centroid given by the relation

dz
dz

ro dro
r dr

0

uz(ro,zo,to)dt0
uz(r,z,t)dt

deo

a5 (39)

19




VZ “p0
1/2(1 ) 82)172 ©.g

(=2
|
08 I'CJE
I

eq ~

in which wpg and wcg are the nonrelativistic plasma and cyclotron
angular frequencies, respectively, and R, is the relativistic reduction
factor as given in the section FORMULATION OF RELATIVISTIC EQUATION OF

MOTION.
Substituting equation (39) into equation (37), we obtain

(2+2a) _b'(2) .

beq ’ I Ecct
Ling(t) = 2meg(rg. g, to)ug| prry TR R B

ind
(¥2a) 0

:E: de

X aT r dr dz
(a+2a) _b'(2)
2
beq Uy Er—cct + Ez—cct de0
= ZWIO ETTET G— v V de r dr dz
z ind ind
~(2+2a) ©

(40)

where uz(rg,zg,tg) = ug 1is the dc beam velocity. In terms of the normal-
ized parameters & and p, this is written as

z+2a
r—cct Ez—cct
I]nd(t) =21rI + V
E 1Qd ind
_ 2+2a
de
§ 3
X asg a“p dp dz. (41)

Furthermore the induced current 14,4 may conveniently be represented by a
Fourier series in the variable 6 as follows:
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2n 2
1 COS ne
Iind(n)(m’t) = E/‘ Iing(t)de+ - f Ii,q(t)cos no de
0 0

@©

. 2n
sin ne .
+ - f Ii,q sin ne de (42)
0

n=1

where Iipd(t) is given by equation (41).

The two integrals in equation (42) can be evaluated, first, by trans-
forming the variable o in terms of &3, the electron injection phase at
the entrance plane to the interaction gap space of the first cavity. With
reference to figure 3, we note that the times, tj, to, t3, . . ., t,, taken
by electrons to pass through the rf gaps are interre%ateg:

t, = t +2+2a+L2—(9.+2a)
2 Y21 Uz2

2(s+2a) b1 L (#*2a)
0 Y21 Uz2

=t0+ m

In terms of the normalized parameter g, this can be written as

L, . L
1°-1 2 % - |
=%t %*tT 8 *(3“5—2>52

In general

n=1
(43)

where 6g = 2(2 + 2a)(w/ug) is the dc transit angle of the electron in tra-
versing the first interaction gap space. -

Next, by relating the cavity gap field Ecct with the induced voltage
Vind through equations (11) to (13), we can write
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Ecct m cos-(en + An) 1 <G>
Vind 2 sinh(my) Vn cos(en + An) F

G
m
= 7 sinh{ma) (F)

Furthermore, for simplicity, equation (42) is written in terms of the Four-
ier coeff1c1ents Ags Ap, and Bp. By a substitution of equation (43)
into equation (42), we obtain

m+a)
mIOa
AO 2’s1nh(mz) 2+2a X p dp dg dqo (44)
(2+a)
’Z_si'rTﬁTnTT / / 2+2a)_/ X cos p dp dg deo (45)
(2 a)

mIOa
B = X sin p do d& d6 (46)
n -2 sinh{mg) 2+2a) 0
where
* /G G
e Gl M (47)
£ p 3

The G's are given by equations (11) to (12), and the variable e s
given by equat1on (43). The amplitudes of the harmonic to dc can be ob-
tained by using the re]at1on

1,:
(ind)n
——TE;——- An + Bn (48)
and the phase angle is related by
B
-1 °n
An = tan Z\; (49)
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With the induced current obtained from equations (42) to (49), the mod-
ulation index for the third and succeeding cavities up to the penultimate
cavity can be computed through an iteration procedure. To illustrate this
method of approach, let us consider a case of computing a3 (i.e., the gap
voltage of the third cavity) as an example:

(1) Find the induced current as computed at the midplane of the third
cavity gap, called I(jnd)3-

(2) Let the gap voitage Vg 3 = 0, and compute the gap voltage using the
relation I

Vza = Z3(@)(4p4y3

where

Rsn

Z3(w) = 1 T 25505

(3) Using the value of Vg3, as obtained in step (2), formulate and
solve the equations of motion, equations (16) and (17), and thus obtain the

induced current, called 1i3;.
(4) Using 134, as in step (2), compute the gap voltage, called the

gap voltage Vg3p.
5) Repea% steps (3) and (4) until a gap voltage Vg3k is obtained so
that the following condition converges:

In the case of the output cavity, the gap voltage VgO is simply

V0 = Zout{M (ind)o (50)

where 1 ind)0 1s the current induced in the output cavity, and Zoyt(w) is
the dynamic Shunt impedance of the output cavity given by

7 () = ShO (51)
out'®’ = T ¥ 328q

Power delivered to the external load of the cavity is obtained by

1
Pout = ?‘Rel(ind)0V§0 (52)

*

o 1s the complex conjugate of Vgg. Finally, the output
gficiency can be computed in the u3ual way:

where V
cavity e
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Pout  (1/2)Rel 544y0V30 53)
n=p._~ V.1 (
in 0°0

where Vg is the dc beam voltage, and Ig is the dc beam current, which is
related to the perveance by the relation

v
3 0
Kr='<o<1'2's‘v;> (54)

where Kq = IOIV%/2 is the nonrelativistic perveance, and Vg = mgc?/e
= 5.110xI0° volts is the equivalent beam voltage.

SUMMARY

Three-dimensional equations of motion of relativistic electrons in an
axisymmetric field in the presence of space-charge forces has been ob-
tained. The field-electron interactions in various interaction gaps and in
various drift spaces are investigated by using a Lagrangian formulation of
the hydrodynamic model. The equations of motion are used to find the velo-
city of each disk of electrons, its phase with respect to the interaction
gap voltage, and its radius at a specified position in various interaction
gaps and in various drift spaces. The velocity modulation and electron
bunching in the input and second cavities are formulated by using the small
signal approach; however, both the radial and axial coupling coefficients
are used to compute current. The induced current in the third and succeed-
ing cavities up to and including the output cavity is computed on the basis
of Shockley and Ramo theory. Power and efficiency are calculated in the
usual way.
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APPENDIX A
MODIFICATION OF PARAMETERS DUE TO RELATIVISTIC VELOCITY
Mass Increase

When the electrons are accelerated through very high potentials, they
experience an increase in mass which modifies the velocity-potential rela-
tionship. The increase of the electronic mass with increasing electron
velocity is given from the transformation law originally proposed by H. A.
Lorentz (1904):

m
me — 9% (AL)

where B 2 u/c, as usual in relativistic formulas; c = 3x108 meters per sec-
ond is the velocity of light; m is the mass of the electron at the velocity
u; and mg 1is the electronic rest mass at zero velocity.

Velocity of Electron

If W 1is the total energy of the electron in joules, the relation

W= mc (AZ)

expresses the equivalence of the instantaneous mass and the inertia of
energy. The total energy of an eiectron is the sum of the energy inherent
in its mass plus its kinetic energy. The total energy change of an electron
when it is accelerated through a potential of Vg volts, can, according

to equation (A-2), be expressed by

2
eV0 = oW =c"(m - mO)
2 /m
= mge (H-_ ) (A3)
0
Thus
m e
L. V. +1 (A4)
Mg moc2 0

By introducing the energy equivalent of the electron rest mass mg as

eV = m.C (A5)

e 0

we obtain
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2

Mp® 6
Ve == 0.5110x10" volts (A6)
Hence equation (A4) can be written as
v ,
Mo Ve :

When this is substituted into equation (Al), we obtain the relation between
the electron velocity u and the accelerating potential V:

1/2

v -2
0
ug = cfl - (} + V;) (A8a)
or, alternatively,
1%
ZV WV T0227
U, = ZE—V e=C
0 m v V + 5il
|
Ve
= UggRy, (for V in kilovolts) (A8D)
where
e
UOO— 2%\/0

is the nonrelativistic expression of the electron velocity, and

<l<
[ ]

1
1+ 5

v

u
1 + —
Ve

is the relativistic correction factor.
Angular and Plasma Frequency of Electron Stream

The angular frequency of revolution of the electron in the homogeneous
magnetic field B is defined as the cyclotron frequency given by
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w =%B (Ag)

At moderate electron velocities, the increase in electronic mass is negli-
gibly small; hence wc 1is considered to be independent of the velocity of
the electron. However, this is not true for the high-velocity electron.
The cyclotron frequency for large velocities follows by substitution of the
relativistic mass of equation (Al) for m:

2 1/2
& op - ]

L/2
wco[l - (%)} (ALQ)

where wcq 2 (e/mg)B 1is the nonrelativistic cyclotron frequency. In
terms of Vg, equation (AlQ) can be written as

€
]

2
Bc
w = (All)
c V0 + Ve

In 1like manner, the relativistic plasma frequency can be found by substitu-
ting the relativistic mass, equation (Al), and the relativistic velocity,
equation (A8b), for m and u, respectively:

3{m
—

=)
[
(=]
=
[
[e]

-1/4
1V

where who = is the nonrelativistic plasma frequency, and Ugge @S

given in equation (A8b), is the nonrelativistic velocity of the electron.
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APPENDIX B
ENERGY CONSERVATION PRINCIPLE

Consider an electron which has been accelerated through a potential
Vo volts and gained kinetic energy in the amount of eVp; then, by the
equivalence of mass and energy principle, the change in the total energy of
the charged particle is

2 2

W = eV ¢ (m - mo) = Cc é&m (B1)

O=

by equation (A3) of appendix A.
Work done by the force in moving the charged particie of mass m a

distance dr is given by
— - -—_ = — —
=F -ar-elf+Tx?)- ar (B2)

where the Lorentz force law has been involved on the right side of the
equation. Now, power is the rate of change of energy; thus, dividing both
sides of equation (B2) by dt, we obtain

%% = e(E’+ E*x i;) . g%

(B3)

1l

o
m]
c |
N

where T = dr/dt, and (ﬁ’x f?) - U is identically equal to zero. Equation
(B1) is differentiated with respect to time, and the resultant expression is
used to write equation (B3) as follows:

%5 (- T)

or

w(5) -2 ) o

0 moc
d <m > E+- IT
T\ ]=- (B4b)
dt m0 ve
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In a cylindrical

coordinate system, this is written as

d (m __rEr+r‘q>EqJ+zEZ
dt \ my Vo

(Bac)
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